Quizzes and short questions QUANTUM ELECTRONICS by K Thyagarajan, Physics Department, IIT Delhi, New Delhi.

Module 1: Quizzes and short questions:

1. $\mathrm{Q}:$ A plane wave propagates along a direction given by

$$
\hat{\kappa}=\frac{\sqrt{3}}{2} \hat{x}+\frac{1}{2} \hat{z}
$$

In a uniaxial medium with $n_{0}=2.3$ and $n_{\mathrm{e}}=2.2$. What is the angle made by the \vec{S} of the extraordinary wave with the z-axis (optic axis)?
2. Q: Consider a medium with $n_{x}=1.56, n_{y}=1.59$ and $n_{z}=1.60$. A circularly polarized plane wave propagates in this medium with its propagation vector in the $x-z$ plane. At what angle with respect to x-axis should the wave propagate so that its polarization state does not change with propagation?

Answers of module 1 Quizzes and short questions:

A1: A: From the given value of $\widehat{\kappa}$ we know that the propagation vector makes an angle of 60° with the z axis. Since \vec{D} is perpendicular to $\widehat{\kappa}$ it makes an angle of 30° with respect to the z-axis. Using the following relations

$$
D_{x}=\varepsilon_{0} n_{o}^{2} E_{x}
$$

And

$$
D_{z}=\varepsilon_{0} n_{e}^{2} E_{z}
$$

We can obtain the ratio of E_{z} to E_{x} and hence the angle made by the \vec{E} with the z-axis which comes out to be 27.84°.

A2: From the given value of $\widehat{\kappa}$ we know that the propagation vector makes an angle of 60° with the z axis. Since \vec{D} is perpendicular to $\widehat{\kappa}$ it makes an angle of 30° with respect to the z-The propagation must be in the $x-z$ plane so that the two eigen modes may have the same speed. Thus the angle of propagation with the z-axis must satisfy the following equation:

$$
\frac{1}{n^{2}(\psi)}=\frac{\cos ^{2} \psi}{n_{x}^{2}}+\frac{\sin ^{2} \psi}{n_{z}^{2}}=\frac{1}{n_{y}^{2}}
$$

Solving for ψ we get $\psi=60.47^{\circ}$.

